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A.  Introduction 
 In this project, we were primarily focused on testing a conjecture pertaining to posets.  

The conjecture concerns the relationship between posets with the jdt property and posets with 

the Littlewood-Richardson property.  In order to perform such tests, we used Mathematica 

5.1.  While identifying and comparing posets with these two properties was our main goal, an 

equally important aspect of the project is the collection of poset list files created by our 

programs.  If a user is familiar with the data structures we use to represent posets in 

Mathematica, then these files provide this user with reliable lists of posets with various 

properties.  These lists are easily accessible and have been tested for accuracy.   

 A further important by-product of our project is a system of obtaining a unique name for 

each poset.  Mathematica first provided a means to identify a standard form for each 

isomorphism class of posets.  With this and Mathematica’s sort feature, we were able to find a 

standard ordering of the standard forms for each poset size.  Referencing the poset by its size 

and the position of its standard form in this list gives the desired unique name.  For example, 

since the standard form of the 4-element chain is the 16th poset in the standard ordering for 

size 4, we can refer to this poset as 4.16.   

 In this paper, we explain all that is needed to understand the results of our project.  We 

begin with the theory needed to examine posets, in particular posets with the two previously 

mentioned properties.  Next we explain how we translated mathematical theory into the 

Mathematica environment.  So that the reader may better understand the programs and files 

created, the organization of the programming project is then described.  This is followed by 

descriptions of all our programs and data files.  Finally we present the results we obtained.         
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B.  Basic Poset Definitions  
 Throughout this paper we will be concerned with different properties that certain 

structures called posets may possess.  Before we introduce these properties, we begin with 

some basic definitions.  

 A partially ordered set or poset is a set P together with a partial ordering, £.  That is, £ is a 

reflexive, antisymmetric and transitive relation.  The size of this poset is the cardinality of the 

set P.  For the remainder of the paper, P is assumed to be a finite poset.  We use the 

convention that x < y means x £ y and x π y.  For two elements x, y in P, y is said to cover x 

if x < y and if there is no z in P such that x < z < y.  If neither x £ y nor y £ x, x and y are said 

to be incomparable.  An example of a poset of size n is the integers 1 through n together with 

its usual order.  The notation n is used to represent this poset. 

 Posets are depicted with Hasse diagrams.  The Hasse diagram of a poset shows the 

poset’s covering relations.  The Hasse diagram of P is formed by representing each element of 

P with a dot.  These dots are arranged such that if y covers x, x is drawn below y and the two 

dots are connected with a line.  For example, consider the set P={2,3,6,9}.  Division gives a 

partial ordering for this set: x £ y if x divides y.  With the dots labeled for clarity, the Hasse 

diagram for this poset is: 

 

 

 

 

 A connected poset is a poset whose Hasse diagram is a connected graph.  As in graph 

theory, if y covers x in P, we call x a child of y and refer to y as a parent of x.  Often we 

consider Hasse diagrams whose dots are labeled with integers.  A labeled poset on [n] is a 

partial ordering on n: The elements in the Hasse diagram are labeled with the integers 1 to n.  

The poset is naturally labeled if i < j in P implies that i < j as integers.  Visually, the label of 

a dot must be larger than the labels of its children.  In Section II.B, we specify a standard 

natural labeling for each poset. 

 Within a poset, there are maximal and minimal elements.  A maximal element in P is an 

element that is not covered by any other elements.  Similarly, a minimal element is one that 

does not cover any other elements.  Hasse diagrams make maximal and minimal elements 

particularly easy to identify.  Minimal elements have no lines below them and maximal 

elements have no lines drawn above them in the Hasse diagram.  In the above example, 2 and 

3 are minimal elements while 6 and 9 are maximal.  At times we will consider posets with a 

unique maximal element.  Observe that if a poset is not connected, each connected component 
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of its Hasse diagram will have at least one maximal element.  So posets with a unique 

maximal element are necessarily connected.    

 There are also certain subsets of posets that we will examine.  A chain is a subset C of P 

such that for every x and y in C, either x ≤ y or y ≤ x.  An antichain is a subset A of P such 

that any two distinct elements of A are incomparable.  An ideal is a subset I of P such that if x 

is in I and y ≤ x then y is also in I.  A subset S of P is said to generate I if I is the smallest 

ideal in P that contains S.  For a poset P, there is a one-to-one correspondence between 

antichains and ideals.  If I is an ideal of P, then the set A of the maximal elements of I is an 

antichain.  Forming the ideal generated by this set A gives back the original ideal I.  A filter is 

a subset F of P such that if x is in F and y ≥ x then y is also in F.  Note that if I is an ideal then 

the elements in P-I form a filter.  For any x,y in P, the interval [x,y] is the set of all z in P 

such that x ≤ z ≤ y.  Convex sets are another type of subset that we will consider.  A subset C 

of P is convex if for x and y in C, if z is any element such that x ≤ z ≤ y, then z is also in C.   

 In our examination of posets, we also consider functions from one poset to another.  A 

function j from the poset P to the poset Q is order-preserving if x ≤ y in P implies that j(x) 

≤ j(y) in Q.  Suppose the size of P is n.  Then an order extension of P is an order-preserving 

bijection, j, from P to the poset n.  Suppose P is labeled.  Let’s view its labels b1, b2, …, bn as 

being black.   And let’s regard elements of the codomain n as being yellow. We can represent 

an order extension of P using a one-rowed permutation by forming ( j(b1), j(b2), … ,j(bn) ), 

which is a list of yellow labels.  So j gives a new yellow labeling of P.  This yellow labeling 

is found by relabeling the element bi with j(bi) in the Hasse diagram of P for 1 £ i £ n.  For 

example, consider the following naturally labeled poset P: 

 

 

 

 

 

 

Then the order extensions and corresponding yellow-labeled Hasse diagrams of P are: 

 (1,2,3,4) (1,3,2,4) (1,4,2,3) 
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 (2,3,1,4) (2,4,1,3) 

 

 

 

 

 

 

 More often, we consider the inverse of one of these order extensions, an inverse 

extension.  Again view P as being labeled in black and view the elements of n as being 

yellow.  As with order extensions, we can represent an inverse extension of P using a one-

rowed permutation.  To do this, we form the list ( j-1(1), j-1(2), …, j-1(n) ).  This is a list of 

black labels of P, which is obtained by reading the black labels according to the yellow order.  

For example, if P is the poset above, the inverse extensions of P are the lists of black numbers  

(1,2,3,4), (1,3,2,4), (1,3,4,2), (3,1,2,4), and (3,1,4,2). 

 Two posets P and Q are isomorphic if there is a bijection, j, from P to Q such that x ≤ y 

in P if and only if j(x) ≤ j(y) in Q; that is, if both j and j-1 are order preserving. Observe that 

all posets within an isomorphism class have the same unlabeled Hasse diagram, and distinct 

classes have distinct unlabeled Hasse diagrams.  Hence unlabeled Hasse diagrams correspond 

exactly with isomorphism classes of posets, which are often called unlabeled posets or simply 

posets for brevity.  Then if we have a labeled poset on [n], an inverse extension gives a rule 

for relabeling the poset to obtain an isomorphic naturally labeled poset.  In fact, if we find all 

the inverse extensions of a naturally labeled poset, we can obtain all naturally labeled posets 

in its isomorphism class.  Often, the relabeling is injective; that is, each inverse extension 

gives rise to a different poset.  However, this is not always the case.  For example, consider 

the poset of size four consisting of a single antichain.  Any inverse extension of this poset will 

give the same naturally labeled poset.  
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