
II. Poset Properties 
 

 In this chapter we will give explanations of three properties that posets may possess.  We 

describe the d-complete property in section D.  The other two properties are known as the jdt 

property and the Littlewood-Richardson property.  Both of these properties originated in the 

context of skew Young tableaux.  Jeu de taquin is a process that produces a standard Young 

tableau from a skew standard Young tableau by repeatedly shifting its entries.  A standard 

Young diagram has an underlying poset.  For example, consider the following Young diagram 

l.  To find its corresponding poset P, we rotate l by 45° and replace each box with a point.  

Two such points are connected with a line if they represent adjacent boxes.   

 

 

 

 

 

 

  
 

As a result of the correspondence between Young diagrams and posets, aspects of the jeu de 

taquin (jdt) process can be extended to posets.  Schützenberger proved that Young diagrams 

have the jdt property [Fu]. 

 Classically, the Littlewood-Richardson rule concerns the multiplicities of Schur functions, 

which can be described with semi-standard Young tableaux.  Let n ≥ 1 and let l be a Young 

diagram of size n.  The Schur function of l, sl(x1,…,xn), is a symmetric polynomial in x1,…, 

xn.  The Littlewood-Richardson rule is used to calculate the product of two Schur functions, 

sl(x1,…,xn) and s�(x1,…,xn), each indexed by a Young diagram.  One proof of the Littlewood-

Richardson rule uses the jdt property for Young diagrams ([BSS], example 3.3).  Proctor 

produced the definition of the Littlewood-Richardson property for posets as a way of 

distilling out the most essential part of the proof of the Littlewood-Richardson rule for Schur 

functions.  Before we consider these concepts in the realm of posets, we first give preliminary 

definitions and operations. 
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A.  Move Operations 

 Let P be a fixed poset.  In the following discussion we will consider two totally ordered 

sets: R = {R1 < R2 < R3 < …} and G = {G1 < G2 < G3 < …}.  We will refer to the elements of 

R as red labels and the elements of G as green bubbles.   

 Now let N Õ P and k = | N|.  We refer to an order preserving bijection Y: N Æ {R1, R2,…, 

Rk} as a red numbering on P.  Similarly, if T Õ P and | T| = m, we refer to an order 

preserving bijection B: T Æ {G1, G2,…, Gm} as a green numbering on P.  We refer to the set 

N as the shape of Y and the set T as the shape of B. The pair (B,Y) is a bi-numbering of P if 

T » N = P and T « N = ∆.  For example the following is a black labeled 8-element poset P 

with a bi-numbering, (B,Y): 

 

 

 

 

 

  

 

 

 

 

 

 Given a bi-numbering (B,Y) of P, we can define move operators.  The move operator 

M1(B,Y) gives a new green numbering, A, and a new red numbering, X, on P.  The 

numbering A is produced by moving the green bubble G1 to the location of the largest red 

label that it covers.  Since a red label is moved in this process, M1 also produces the red 

numbering X on P.  So the result of M1(B,Y) is a new bi-numbering (A,X) on P.  If we 

consider the initial bi-numbering of the poset above, M1 produces the bi-numbering, (A,X): 
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We can similarly define a move operator Mk by moving the green bubble Gk.   

 We obtain another operator from each of these move operators.  The pull operator, Pullk, 

is defined by iterating Mk until Gk does not cover any red labels.  For example, consider again 

the black labeled poset P we started with above.  After one application of M1, we obtained the 

bi-numbering (A, X).  Applying M1 a couple more times gives the following progression of 

bi-numberings: 

        (C,Z)      (D,W)   

   

 

 

 

 

 

 

 

 

 

 

 

Therefore the result of Pull1(B,Y) is the bi-numbering (D,W).  We can think of the operation 

Pullk as ‘sliding’ the green bubble Gk down as far as possible.  For a given bi-numbering 

(B,Y) on P, we can define Pull(B,Y) to be the bi-numbering obtained by successively 

applying Pull1, Pull2,…, Pullm.  That is,  

   Pull(B,Y) = Pullm  …  Pull2  Pull1(B,Y). 

Again consider the poset P we started with above.  Then Pull(B,Y) is 
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 For the forthcoming properties, we will need to separately consider the resulting red 

numberings and the resulting green numberings of Pull(B,Y).  We will use Pullr(B,Y) to 

denote the upper red numbering that arises from the pull operation.  Similarly, we will refer to 

the lower green numbering that is produced as Pullg(B,Y). 

 

B.  The jdt Property    
 With these operations, we can now define the jdt property for posets.  The jdt property is 

defined in Proctor’s paper [Pr1].  The following is taken from a restatement [Pr2] of that 

definition.  A poset P has the jdt property if and only if for every filter F of P and for every 

red numbering Y of the complementary ideal P–F and for every green numbering B of F, we 

have that Pullr(B,Y) = Pullr(C,Y) for every green numbering C of F.   

 In determining whether or not a poset has the jdt property, we consider every possible 

filter F and corresponding ideal I of P.  To illustrate this property, we consider the following 

poset P and ideal/filter pair I/F.   

 

 

 

 

 

 

 

For each ideal/filter pair, all red numberings of I and all green numberings of F are found.  

For example, the red numberings of the ideal I shown above are: 

 

 

 

 

 

 

And the green numberings of the filter F shown above are: 
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 For every such red numbering Y and green numbering B, the operation Pull(B,Y) is 

performed.  For our continuing example, the operation Pull is performed four times, giving 

the following resulting bi-numberings: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For a given red numbering Y, the resulting red numberings, Pullr(B,Y), are compared for all 

B.  If they are all the same for every Y, the poset has the jdt property.  If there is some Y such 

that the red numbering Pullr(B,Y) and the red numbering Pullr(C,Y) are different for some 

green numberings B and C of F, then the poset does not have the jdt property.  For our 

example, the resulting red numberings in the first column, Z and W, are the same and the 

resulting red numberings, X and V, in the second column are the same.  Therefore the 

conditions for the jdt property are satisfied for this ideal and filter of P.  To determine if P has 

the jdt property, all other ideal/filter pairs must next be considered.  We refer to a poset that 

has the jdt property as a jdt poset.     
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C.  The Littlewood-Richardson Property 
 Before we present the next poset property, we will introduce some notation for sets related 

to numberings and the shove operator.  Let F be a filter of P and I = P – F.  Then S(F) will 

denote the set of all red numberings of F and S(I) will denote the set of all red numberings of 

its corresponding ideal.  For example, consider again the poset P and ideal/filter pair, I/F, 

from the previous section.  Then S(I) = {Y1, Y2}.  For each fixed green numbering B of F, we 

can define the set of resulting bi-numberings 

 OB(I) = {(E,U): (E,U) = Pull(B,Y) for some Y in S(I)}.   

Let B be a green numbering of F.  To form OB(I) we consider all red numberings, Y, of the 

ideal I.  For each of these, the operation Pull(B,Y) is performed.  The resulting bi-numberings 

compose OB(I).  For our continued example, OB1(I) = {(A,Z), (C,X)} and OB2(I) = {(D,W), 

(E,V)}.  We will now group numberings together according to the filter shapes N of the 

resulting red numberings: 

 OB(I,N) = {(E,U) : (E,U) = Pull(B,Y) for some Y in S(I) and the shape of U is N}, 

 GOB(I,N) = {E : E = Pullg(B,Y) for some Y in S(I) and the shape of E is P–N}. 

For our example, for all green numberings B of F, the only filter N for which OB(I,N) π ∆ is 

N = F.  For that example, OB1(I,F) = {(A,Z), (C,X)} and OB2(I,F) = {(D,W), (E,V)}.  Also, 

GOB1(I,F) = {A,C} = {A} since C = A and GOB2(I,F) = {D,E} = {D} since E = D.  

 We are now ready to define the Littlewood-Richardson Property.  This definition is an 

improved version of the one given in Proctor’s Ann Arbor talk [Pr2].  However it was shown 

[Pr3] to be equivalent.  A poset P has the Littlewood-Richardson property if and only if, for 

every filter F of P, there is at least one fixed green numbering B of F, such that  

 OB( P–F ) = »N GOB( P–F, N ) ¥ S(N), 

where the union is over all filters N Õ P with GOB( P–F, N) π ∆ 

 As with the jdt property, to determine if a poset P has the Littlewood-Richardson property 

we consider every filter F of P and its corresponding ideal P–F.  Then we find each green 

numbering B of F.  For every red numbering Y of the ideal P–F, we perform the operation 

Pull(B,Y).  For our example, this gives us the 2 ¥ 2 array of bi-numberings shown at the end 

of the previous section.  The shape of each of the resulting green numberings, Pullg(B,Y) is an 

ideal, G, of P.  For each of these, we find all red numberings of the corresponding filter N = 

P–G to form the set S(N).  For our example the only such shape G that arises is G = I.  Then N 

= F and we have S(F) = {Z, X}.  To test a poset for the Littlewood-Richardson rule, we then 

check to see if »N GOB( P–F, N ) ¥ S(N) is equal to OB(I).  Returning again to our example, 

we have 

»N GOB1( P–F, N ) ¥ S(N) = GOB1( P–F, F ) ¥ S(F) = {(A,Z), (A,X)} = OB1(I), since C = A.  
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Therefore B1 satisfies the condition for the Littlewood-Richardson conjecture for this 

ideal/filter pair. The second bi-numbering B2 also satisfies the condition.   If these are equal 

for at least one green numbering B for every filter F of P, then we say that P is a L-R poset.   

 

D.  d-complete Posets 
 In 1993, Proctor developed the d-complete property [Pr4] while taking a combinatorial 

approach to certain theorems in Representation theory.  Posets that have the d-complete 

property satisfy certain local structural conditions.  In order to understand these conditions, 

we must begin with some related definitions.  These definitions as well as the definition of d-

complete come from the paper [Pr1] on the jdt property.  However Proctor’s recent 

improvement [Pr3] of the d-complete definition is incorporated. 

 Let b,n ≥ 0.  The poset �b,n consists of two incomparable elements i and j together with a 

chain of b elements tb Æ … Æ t2 Æ t1 such that t1 Æ i and t1 Æ j and a chain of n elements a1 

Æ a2 Æ … Æ an such that i Æ a1 and j Æ a1. We refer to the chain tb Æ … Æ t2 Æ t1 as the 

“tail” and the chain a1 Æ a2 Æ … Æ an as the “neck”.  For example, the following poset is 

�3,3:  

 

 

 

 

 

 

 

 

 

 Now we turn our attention from the �b,n posets to related subsets of posets.  Let P be a 

poset and k ≥ 3.  An interval [x,y] in P is a dk-interval if it is isomorphic to �k-2,k-2.  A subset 

of P is a d–
k-subset if it is isomorphic to �k-2,k-3.  For example the poset on the left below has a 

d3-interval and in the poset on the right, the interval [x,y] is a  d–
4-subset.   
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Because of their appearance, we call d3-intervals “diamonds”.  Observe that for all k ≥ 3, 

every dk-interval contains a diamond.  A d–
3-subset consists of two incomparable elements x 

and y which both cover an element w.  Then a d–
3-subset in P is completed if there exists an 

element z in P such that z covers x and y and [x,z] is a d3-interval.  For k > 3, a d–
k-subset (and 

interval) [x,y] is said to be completed if there exists a z in P such that z covers y and [x,z] is a 

dk-interval. In the poset shown below, [x,y] is a d–
4-subset that is not completed since [x,z] is 

not isomorphic to �2,2. 

 

 

 

 

 

 

 

 

 

 

Let S be a d–
k-subset.  We say S is completed freely if any z completing S does not cover any 

elements outside of S.  The d–
3-subset in the poset below is not freely completed.     

 

 

 

 

 

 

 

 

 Now let [x,y] be a dk-1-interval in P for k > 3.  Suppose that x covers two elements w and 

w’ and that [w,y] and [w’,y] are both d–
k-subsets.  Then [w,y] and [w’,y] are called 

overlapping d–
k-subsets.  The figure below has overlapping d–

4-subsets.  
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We can also define overlapping d–
3-subsets.  Suppose we have two d–

3-subsets: one consisting 

of the incomparable elements x and y that cover w and one consisting of incomparable 

elements x’ and y’ that cover w’.    These two d–
3-subsets overlap if x = x’, y = y’, and w π 

w’.  The poset below has overlapping d–
3-intervals.  This is the complete bipartite graph on 

two sets of two vertices, K2,2. 

 

 

 

  

 

 

 

 

 We are now ready to define the d-complete property.  A poset P is d-complete if for every 

k ≥ 3 each d–
k-subset is completed freely and there are no overlapping d–

k-subsets.  Since a d-

complete poset has only completed d–
3-subsets, any v-shaped subset of the poset is the bottom 

of a diamond.  Furthermore every diamond in the poset that has a tail also has a neck of the 

same length because all d–
k-subsets in the poset are completed for k > 3.  Since every d–

k-

subset in a d-complete poset is completed freely, elements that are the tops of diamonds only 

cover two elements.  Also this condition ensures that any other element in a d-complete poset 

that is in the neck of a dk-interval can only cover one element.  Finally, overlapping d–
3-

subsets create a K2,2 in a poset.  Therefore d-complete posets have no K2,2-shapes.   
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Here are some examples of d-complete posets: 
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E.  Proctor’s Conjecture 
 Now that we have defined them, it is natural to speculate about the relationship between 

posets with these three properties.  As mentioned in the introduction, a main component of 

this project is comparing jdt posets with L-R posets.  The following result previously 

established [Pr2] a relationship between these families of posets.   

 

Theorem 2.1 

Let P be a poset.  If P has the jdt property, then P has the Littlewood-Richardson property.  

 

After obtaining this theorem in 2003, Proctor asked if the converse is also true.  Because of 

the computational results described in Chapter VII, Proctor has now made the following 

conjecture. 

 

Conjecture  

Let P be a poset.  If P has the Littlewood-Richardson property, then P has the jdt property.  

 

 In this project we have confirmed this conjecture for posets with no more than 9 elements.  

As the sizes increase, the number of posets to examine becomes very large.  For this reason, 

we use one of Proctor’s earlier results from studying posets with the jdt property [Pr1]. 

 

Theorem 2.2 

If P is a d-complete poset then it has the jdt property.   

 

Observe that as an immediate consequence of Theorem 2.2 and Theorem 2.1, a d-complete 

poset also has the Littlewood-Richardson property.  So all d-complete posets can be removed 

before testing a list of posets to see which have the jdt property and which have the 

Littlewood-Richardson property.  Therefore the process of confirming the conjecture for a 

given poset size can be shortened.  In the following chapters, we will describe our testing 

process for this conjecture. 
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