
IV. Programming Organization

 Throughout the project, we used Mathematica to generate and examine posets. This

chapter describes the overall structure of this computational project. Because different kinds

of programs are used, we will in this section explain the different kinds that arise as well as

how they interact with each other and the user. In our examination of posets, we used data

files to store a variety of information for inspection and comparison. The majority of the files

created contain posets while the other files contain an assortment of relevant information for

posets. Detailed description of the various programs and data files are provided in Chapters V

and VI.

A. Terminology and Overall Organization
Certain naming conventions are used to distinguish between the ways Mathematica is

implemented. Some structures we use are enclosed functions that should not be modified by

anyone after creation while others need to be updated by a user for any given run. We refer to

any of our programming constructions as programs. Each program takes one of three forms.

Subroutines are fairly basic programs that are used solely within other programs. Our

subroutines are designed to complete one task such as writing a nested list to a file or

removing a minimal element from a poset. Most subroutines are used within several other

programs; so their primary purpose is to prevent repetition of the same code in many places.

Other subroutines fulfill a very specific purpose and were created to avoid clutter within the

larger calling program.

The programs in the next category are generally longer and more complicated. We refer

to these programs as functions. Although functions are also called by other programs, they

are usually only used within one other program. Functions fulfill a specific purpose such as

generating inverse extensions or testing a poset to see if it has a certain property. Most

functions require subroutines or other data to be run. Therefore, we always call functions

from within another function or a program of the next type. Both subroutines and functions

are designed to be used without any modification after creation.

The final form a program can have is a main program. Main programs do not have an

enclosed structure and so cannot be called by other programs. Main programs consist of lines

of code to be evaluated as a Mathematica notebook. Changes must be made in a main

program each time it is run. These programs provide an environment for reading in data,

declaring global variables, as well as calling subroutines and functions.

In naming and referring to our programs, we use several conventions of note. In order to

distinguish programs we created from the programs provided by Mathematica, the names of

IV.2

our programs are misspelled. For example, the program used to generate an ideal of a poset is

called Ideel[]. Besides using incorrect spellings of words, we also left off vowels in the

names of programs. ThrghBldUp.nb is a good example of this convention. Furthermore we

capitalized the first letter in each word making up a program name to make interpreting the

name easier. For example, the program to generate all posets with a unique maximal element

is BldUMxmls.nb.

The way we refer to a program also indicates its type. Because subroutines and functions

are Mathematica modules, functions which are called with arguments within brackets, we

refer to these programs in the following way: ProgramName[]. Therefore, Ideel[] must be

either a subroutine or a function. All subroutines lie in one of two files, GenrlUtils.m or

PosetUtils.m, and these files contain only subroutines. Then since Ideel[] is in PosetUtils.m,

it can be identified as a subroutine. A main program is referred to by its file name. For

example, the program mentioned above that generates all posets with a unique maximal

element is a main program and the code for this program is in the file BldUMxmls.nb and so

we refer to the program using this name.

B. Variable Usage and Reading in Data
For our subroutines and functions, information is usually passed in by arguments. Usually

all information needed for a subroutine is provided from its arguments. Occasionally,

however, functions require data from files or global variables. The main program in which

the function is called must provide this data.

InvExtsWRI[] and JDTLRQ[] are the only two functions that require outside data. For

InvExtsWRI[], we use a global variable and refer to certain equations. These equations,

described in section VI.B, are stored in the files stdisos* and lookups*, for 4 £ * £ 7.

Therefore these files need to be read-in by any main program that calls this function, such as

JDTLRscan.nb. Also InvExtsWRI[] requires that the lists of inverse extensions in invexts*,

again for 4 £ *£ 7, be stored in a list as the global variable invrsex[*]. Since JDTLRQ[] calls

InvExtsWRI[], all of the above data also needs to be provided by any main program that calls

it. In addition, JDTLRQ[] refers to another global variable. The variable szord is a list of

integers that correspond to ideal sizes. It must be defined in any main program, such as

JDTLRscan.nb, that calls JDTLRQ[].

Main programs are the only programs in which data from other files is read-in and global

variables are defined. Because of the format of main programs, all variables within a main

program are global. As mentioned above, any global variables needed by functions that a

main program calls are also defined here. At the beginning of a main program, the files

containing all needed subroutines and functions as well as any files containing additional data

 IV.3

are read-in using the Mathematica command: <<. Using this command, Mathematica can

only find files in the currently set directory. Therefore users must specify the directory in

which they have these files saved before the program is run.

C. User Interaction
 Along with setting the directory, the user must make other changes within main programs.

In this section we will mention these and other steps a user must take to obtain the results of

this project or apply our programs to other problems.

First of all the user needs to obtain the files containing the programs she needs, as well as

files containing any related programs or data, from our website. All main programs are saved

in Mathematica notebooks while subroutines and functions are grouped into text files with .m

extensions. All the program files downloaded from the website should be saved in the same

directory. Data files should be saved within subdirectories of this directory. See Chapter VI

for our subdirectory names and how we grouped the data files into subdirectories. The files

containing subroutines and functions as well as data files should not be altered by the user.

The functions and subroutines should be used from one of our main programs or from another

Mathematica notebook.

To use one of the main programs, the user should open the file containing the program in

Mathematica. The technical note below describes how to achieve our original spacing and

layout if you are unable to open our .nb files. When a main program has been opened, the

user can check the beginning comment lines to see how much he needs to change as well as

which other programs will be needed. Next the user should search the main program for

comment lines beginning with ‘Change’. These comments indicate that the user must make a

change in the next line of code. In some instances, the code is located on the same line as the

comment while in others the code that is changed is below the comment. For example,

suppose the user wants to find all connected posets of sizes 6-8 using Selct.nb. The first

change the user must make is to set the directory in which the files have been stored. This is

done within the SetDirectory[] command below the comment ‘Change directory:’. If the

desired test function is not in PstPropTsts.m, the user would also need to change the file

containing the test. Then the user must set the variables nstrt=6 and nend=8 in this program.

These changes are made to the right of the comments ‘Change starting size:’ and ‘Change

ending size:’ respectively. Next, the user must specify an input subdirectory and file family

such as Stdpsts/stdpsts. This is done to the right of the comment ‘Change input family:’.

Below this and to the right of the comment ‘Change output family:’ the user must specify a

subdirectory and name for the file that will contain the connected posets, such as

Connets/connets. The final modification the user must make is to change the property test to

IV.4

ConnctdQ[] within a WrtLstOfLst[] call. This change is made three lines below the comment

‘Change poset property test:’. When the user has located and updated the code in the

necessary places, the main program is ready to be run. The user may then hit ‘Shift+Enter’ to

run the program.

In order to view the data generated by a main program, the user will usually need to take

an additional step after running the program. The only two programs that print their results to

the screen are the data file inspection and comparison main programs. While the results from

the other main programs are not displayed immediately, the user can access this information

using Inspct.nb. In Inspct.nb, the user can view some lines of a file generated by one of the

other main programs and check its length. A user can also assess the contents of a poset list

file by comparing it to another such file using the program Compar.nb. The user may also

view the contents of any data file generated by our main programs using a text application or

the command: !!filename in Mathematica. For some of our main programs, time and memory

considerations are an issue for larger poset sizes. Therefore in the poset generation programs

and in JDTLRscan.nb, the maximum consumption of RAM, the time used by the CPU, and

the amount of actual time that a run took are displayed on the screen.

 IV.5

D. Technical Notes
 Aside from the information above, there are several other issues that arose during our

project of which the user should be aware.
• Creating Subdirectories: Each program that generates data files creates these files in

subdirectories. Before running a main program for the first time, the user must create the
associated data subdirectory folders by hand.

• Executable Attribute: When Mathematica is used on an XP computer to create data files
in a Unix file system, the new data files have the executable attribute. This can be
removed by hand without adversely affecting the readability of these files for future input.

• Reformatting/Running Program Files: As noted above, our subroutines and functions
are being saved in ‘text’(.m) files before being posted on the website. Also, we provide
.m versions of our main program files for those unable to use our notebooks. When these
files are downloaded and opened within Mathematica, the tabs will be set to the default of
4 spaces instead of our convention of 3 spaces. Also all lines will be within one
initialization input cell. To view the code in the main programs in the most readable way,
the user should follow the following steps. Select the right cell bracket in the .m file and
then select ‘Copy’. Next open an empty template notebook (as described in Appendix C)
and then select ‘Paste’. After this, open the Format menu and select ‘Remove Options’.
After choosing ‘OK’, the cell in the template notebook is no longer an initialization cell.
Next open the ‘Option Inspector’ from the format menu. Under Formatting Options/Text
Layout Options set ‘PageWidth’ to Infinity. This notebook then has close to our original
spacing and layout. The user can save this or run the program from the template after
making any necessary changes.

• Setting the Directory: In the final versions of each of our main programs, the directory is
set using the command: SetDirectory[“ G:/.isis/home/c/a/cagann/public_html/Posets”].
This of course must be updated to reflect the path to the directory in which the user saves
the package files. For the Windows XP machine in Proctor’s office, the command must
be changed to SetDirectory[“ H:/public_html/Posets”].

E. Table 4.1: Program Interaction and Storage
 The following table displays all the programs used in this project. We have grouped the

programs according to their use. For each subroutine and function, we give the programs that

use it. We also indicate the file in which every program is stored. Since the three auxiliary

files described in Chapter VI play an important role in the project, they are included in this

table as well.

Please see Table 8.1 in Chapter VIII for the analogous information for the
hook length poset computation programs.

IV.6

 Program Used By Stored In
General
Subroutines

CmprssBiList[] BasInvExts[], InvExtsWRI[],
StdFormIso[], ThrghBldUp.nb

GenrlUtils.m

 NoSpcs[],
WriteLstOfLst[]

Most main programs. GenrlUtils.m

 PrntCnsmptn[] Poset Generation programs,
JDTLRscan.nb

GnerlUtils.m

Poset Ideel[] AntiChnsIdls[], JDTLRQ[] PosetUtils.m
Subroutines AntiChnsIdls[] InvExtsWRI[], ThrghBldUp.nb,

QckBldUp.nb, JDTLRQ[]
PosetUtils.m

 PllOff[] BasInvExts[], StdFormIso[] PosetUtils.m
 Relabl[] InvExtsWRI[], ThrghBldUp.nb PosetUtils.m
 NewChdLst[] StdFormIso[] PosetUtils.m
 ShrnkCnvxSt[] InvStdTblx[] PosetUtils.m
 InvStdTblx[] InvExtsWRI[], JDTLRQ[] PosetUtils.m

Inverse BasInvExts[] ThrghBldUp.nb InvExIsoFncts.m
Extension and InvExtsWRI[] JDTLRQ[] InvExIsoFncts.m
Isomorphism
Functions

StdFormIso[] QckBldUp.nb, Compar.nb InvExIsoFncts.m

Poset Generation ThrghBldUp.nb ThrghBldUp.nb
Main Programs QckBldUp.nb QckBldUp.nb
 BldUMxmls.nb BldUMxmls.nb

Routine Poset ConnctdQ[] Selct.nb PstPropTsts.m
Property Test UniqMaxmlQ[] Selct.nb PstPropTsts.m
Functions dCompltQ[] Selct.nb PstPropTsts.m

File Inspection Inspct.nb Inspct.nb
And Comparison Compar.nb Compar.nb
Main Programs

Data File Selct.nb Selct.nb
Creation Main Intersct.nb Intersct.nb
Programs Complemnt.nb Complemnt.nb

JDT & L-R Test
Function and

JDTLRQ[] JDTLRscan.nb JDTLRQ.m

Main Program JDTLRscan.nb JDTLRscan.nb

Auxiliary invexts* InvExtsWRI[], JDTLRQ[]
Data Files stdisos* InvExtsWRI[], JDTLRQ[]
 lookups* InvExtsWRI[], JDTLRQ[]

 IV.7

