
VII. Production Runs, Checks, Poset Counts and Resource
Consumption

 In this chapter we describe the exact order in which program runs were completed. We

also include the descriptions of any checks made to verify the results from our programs. For

each stage of the process, we indicate the main program used, the range of poset sizes tested,

and the subdirectories involved. This information is summarized in Table 7.1. In the

following section, we also give the consumption of time and memory for the three largest

poset sizes in the longer program runs. The final part of this chapter is a table containing the

number of posets fitting various criteria. Some of the entries in Table 7.2 were found only by

using Inspct.nb to check the length of files created in this project. However some were

obtained by looking up poset entries in the On-line Encyclopedia of Integer Sequences (OEIS)

[Sl]. Others were taken by examining lists of posets from Proctor’s work in the 1990s. The

posets from Stembridge’s website [St] were the starting point for Proctor’s 1994

computations. These were verified and extended by Wilmesmeier’s project [Wi]. Several of

these poset lists are stored in the subdirectory Ancints. Some of the programs we created

generate some of the same lists. In order to check the current work, we compare some of the

files created by our programs to the files in Ancints using Compar.nb. One of the final checks

is comparing the connected non-d-complete jdt posets to the connected non-d-complete L-R

posets. If the files containing these lists are identical for a given n, Proctor’s conjecture is

verified for posets of size n. The results of all comparisons are included in section C. We

begin however with some comments on timing and memory for the project.

A. Time and Memory Considerations
 As mentioned in the introduction, our programs were created and run within version 5.1 of

Mathematica. In section C, we include the consumption of memory and time for several cases

in each of the final run descriptions. These values are rounded to three significant figures if

the first digit is 1 and two otherwise. The program runs were performed on an IBM, model

6794UN9, with Windows XP. This computer has 512 MB of RAM available. The computer

has an Intel Pentium 4 processor, version x86 Family 15 Model 1 Stepping 2 and a processing

speed of 1.99 Ghz. On this computer, our longest run lasted approximately 7 hours. It should

be noted that the Mathematica Kernel was not restarted for most of the runs. We are not sure

how this affects memory and time.

 Many of our programs involve reading in data from a poset list file and later writing data

to one or more other files. In the development of our programs, we had to consider the way

VII.2

such files would be read-in. The most elegant way to do this is to read-in all the posets in the

file at once and perform the desired calculation for all the posets using a Map[] command.

(This is done in all main programs except JDTLRscan.nb. For JDTLRscan.nb, a loop turned

out to use less time and memory then a Map[] command, though all posets are still read-in at

once before the loop begins.) As long as there are not too many posets in the file, this should

also be faster than the next method. The disadvantage of this method is that it may result in

more memory consumption. For our project, we considered posets with less than or equal to

9 elements and this read-in method worked. Except for one run, the most RAM used was 221

MB. In the final run of JDTLRscan.nb for n = 9 a small amount of virtual memory was

needed, which likely caused the run to take more time. The memory restriction of 512 MB

also prevented us from running the program JDTLRscan.nb using the input file umaxmls9.

This motivated the removal of the d-complete posets before testing for the jdt and Littlewood-

Richardson properties.

 The amount of available memory will also cause some of the programs not to work when

applied to posets of size 10 using the above method. Since the posets of size 10 were not a

high priority for us, this was not a problem in the current project. To go further in the future

however the following method may need to be used. Another way to get the posets contained

in a file is to process the posets one at a time. As each poset is read-in individually, the

desired calculation is performed and the memory consumption is analyzed. These

computations are then done over several days in the background. The main disadvantage of

this method is the length of time it takes. While Engine was not needed for this project, it

would provide a useful environment for this second method of reading in data.

 VII.3

INSERT TABLE 7.1

VII.4

THIS PAGE IS INTENTIONALLY LEFT BLANK.

 VII.5

C. Descriptions of Final Program Runs and Checks

Final Run Stage 1

Main Program: ThrghBldUp.nb Date/Time of Run: 5/27/2005 3:29 PM

Starting poset size: n = 1 Ending poset size: n = 7

Input Subdirectory: NatLabs
Output Subdirectories: NatLabs, ThrStds, InvExts, StdIsos, Lookups

Resource Consumption for the 3 Largest Values of n

Poset Size n = 5 n = 6 n = 7

RAM (MB) 0.20 2.6 49.0

Real Time (min) 0.05 0.55 12.9

CPU Time (min) 0.02 0.20 6.4

Output File Sizes (KB)

 natlabs* 8 130 3,100

 thrstds* 2 9 68

 invexts* 11 162 3,400

 stdisos* 15 220 5,200

 lookups* 2 12 89

Length of Files

 For * = n, the number of lines in the files natlabs* and stdisos* should be the number of

naturally labeled posets of size n. Similarly the number of lines in the files thrstds*, invexts*,

and lookups* should be the number of posets of size n. This was verified using Inspct.nb and

the OEIS.

VII.6

Final Run Stage 2

Main Program: QckBldUp.nb Date/Time of Run: 5/29/2005 11:10 AM

Starting poset size: n = 1 Ending poset size: n = 9

Input Subdirectory: StdPsts
Output Subdirectory: StdPsts

Resource Consumption for the 3 Largest Values of n

Poset Size n = 7 n = 8 n = 9

RAM (MB) 1.90 18.5 220

Real Time (min) 1.72 25.0 420

CPU Time (min) 1.63 24.0 410

Output File Sizes (KB)

 stdpsts* 68 650 8,100

Length of Files

 For * = n, the number of lines in the file stdpsts* should be the number of posets of size n.

This was verified using Inspct.nb and OEIS.

Comparison Check 2.1

 Using Compar.nb, we find that stdpsts7 and thrstds7 are identical files. This comparison

took less than 30 seconds to complete.

Comparison Check 2.2

 Here we compare the file stdpsts8 to canonfs8. The second file contains the child forms

of posets of size 8 found in 1994. Using Compar.nb, we see that the sorted list of standard

forms of elements in canonfs8 is identical to the sorted list of posets in stdpsts8. The

comparison of these files took about 6.5 minutes.

 VII.7

Final Run Stage 3

Main Program: BldUMxmls.nb Date/Time of Run: 5/31/2005 3:35 PM

 6/08/2005 2:28 PM

Starting poset size: n = 1 Ending poset size: n = 6
 n = 7 n = 9

Input Subdirectory: StdPsts
Output Subdirectory: UMaxmls

Resource Consumption for the 3 Largest Values of n

Poset Size n = 7 n = 8 n = 9

RAM (MB) 0.08 0.82 7.5

Real Time (min) 0.02 0.128 1.06

CPU Time (min) 0.04 0.03 0.02

Output File Sizes (KB)

 umaxmls* 11 81 770

Length of Files

 For * = n, the number of lines in the file umaxmls* should be the number of posets of size

n with a unique maximal element. This is also the number of posets of size n–1. Using

Inspct.nb, we find that the number of lines in umaxmls* is equal to the number of posets of

size n–1 obtained from OEIS.

Comparison Check 3.1

 The file ancumxs7 contains the posets of size 7 with a unique maximal element found in

the 1990s. The sorted list of standard forms of the posets in ancumxs7 is identical to the

sorted version of umaxmls7. This verifies that umaxmls7 contains all standard posets with a

unique maximal element.

VII.8

Final Run Stage 4

Main Program: Selct.nb Date/Time of Run: 6/02/2005 5:27 PM

Starting poset size: n = 8 Ending poset size: n = 8

Input Subdirectory: StdPsts
Output Subdirectory: ScrnUMs

Resource Consumption for n = 8

 The time and amount of RAM used was not measured for this run.

Output File Size (KB)

 scrnums8 81

Length of Files

 The number of lines in the file scrnums8 should be the number of posets of size 8 with a

unique maximal element. This is verified in the following comparison check.

Comparison Check 4.1

 Using Compar.nb, we see that the files umaxmls8 and scrnums8 are identical.

 VII.9

Final Run Stage 5

Main Program: Selct.nb Date/Time of Run: 6/03/2005 2:30 PM

 6/08/2005 2:45 PM

Starting poset size: n = 1 Ending poset size: n = 6

 n = 7 n = 9

Input Subdirectory: UMaxmls
Output Subdirectory: Cnctdcs

Resource Consumption for the 3 Largest Values of n

Poset Size n = 7 n = 8 n = 9

RAM (MB) 0.08 0.47 4.2

Real Time (min) 0.01 0.03 0.158

CPU Time (min) 0.01 0.016 0.129

Output File Sizes (KB)

 cnctdcs* 3 7 20

Length of Files

 For * = n, the number of lines in the file cnctdcs* should be the number of connected

posets of size n that are d-complete. For n £ 8, this number was known from Behrman’s and

Wilmesmeier’s work with Proctor in the 1990’s. We verify that cnctdcs* has this many lines

using Inspct.nb, for * £ 8.

Comparison Check 5.1

 The file anctdcs*, for 4 £ * £ 9 contains the connected d-complete posets of size *

according to the old d-Complete program. To check the contents of the file cnctdcs*, we

compare it to anctdcs*. For * £ 8, the sorted list of standard forms in anctdcs* is identical to

the sorted version of cnctdcs*. The standard forms of the posets in anctdcs9 are a proper

subset of cnctdcs9. Upon further inspection, we discovered that the file anctdcs9 is missing

one d-complete poset. Proctor found the corresponding error in the 1994 routine and saw that

it did not affect posets with less than 9 elements.

VII.10

Final Run Stage 6

Main Program: Complemnt.nb Date/Time of Run: 6/03/2005 2:37 PM

 6/08/2005 3:00 PM

Starting poset size: n = 1 Ending poset size: n = 6

 n = 7 n = 9

Input Subdirectories: Umaxmls, Cnctdcs
Output Subdirectory: UMxndcs

Resource Consumption for the 3 Largest Values of n

The time and memory consumption for this run was not measured. The memory consumption

is not significant and the run took less than a minute to complete.

Output File Sizes (KB) n = 7 n = 8 n = 9

 umxndcs* 9 75 750

Length of Files

 For * = n, the number of lines in the file umxndcs* should be the number of posets of size

n with a unique maximal element minus the number of connected posets that are d-complete.

For n £ 8, this number was known from Behrman’s and Wilmesmeier’s work with Proctor in

the 1990’s. We verify that umxndcs* has this many lines using Inspct.nb, for * £ 8 and use

Inspct.nb to find the number of lines in umxndcs9.

Comparison Check 6.1

 The file anumnts7 contains the non-tree posets of size 7 that have a unique maximal

element. To check the contents of the file umxndcs7, we compare it to anumnts7. The list of

posets in umxndcs7 is a proper subset of the standard forms of the posets in anumnts7.

 VII.11

Final Run Stage 7

Main Program: JDTLRscan.nb Date/Time of Run: 6/08/2005 3:05 PM

Starting poset size: n = 5 Ending poset size: n = 9

Input Subdirectory: UMxndcs
Output Subdirectories: CJDTndc, CLRndcs

Resource Consumption for the 3 Largest Values of n

Poset Size n = 7 n = 8 n = 9

RAM (MB) 3.4 45 830

Real Time (min) 0.100 1.31 58

CPU Time (min) 0.09 1.28 26

Output File Sizes (KB)

 cjdtndc* 1 3 6

 clrndcs* 1 3 6

The file cjdtndc* is empty for * £ 4 and is not created by this program run. This file was

created by hand for the sake of completeness.

Memory/Time Remark

 For n = 9, the 830 MB exceeds the 512 MB of available RAM. This resulted in virtual

memory being used. Before the final run, a new hard drive was put in the computer. It

should be noted that on the former hard drive the run for n = 9 took 43 minutes.

Length of Files

 For * = n, the number of lines in the file cjdtndc* should be the number of connected

posets of size n that have the jdt property and are not d-complete. For n £ 8, this number was

known from Behrman’s and Wilmesmeier’s work with Proctor in the 1990’s. We verify that

cjdtndc* has this many lines using Inspct.nb, for * £ 8.

Comparison Check 7.1

 The file anctjdt8 contains the connected jdt posets as found by the old jdt program from

1997. To check the contents of cjdtndc8 we compare it to anctjdt8. Using Compar.nb, we

find that the posets in cjdtndc8 are a proper subset of the list of standard forms of posets in

anctjdt8.

Comparison Check 7.2

 To confirm the conjecture, we compare the files cjdtndc* and clrndcs* for 5 £ * £ 9.

Using Compar.nb, we see that these files are identical.

VII.12

Final Run Stage 8

Main Program: Selct.nb Date/Time of Run: 6/09/2005 4:00 PM

Starting poset size: n = 1 Ending poset size: n = 9

Input Subdirectory: StdPsts
Output Subdirectory: Connets

Resource Consumption for the 3 Largest Values of n

Poset Size n = 7 n = 8 n = 9

RAM (MB) 0 0.56 46

Real Time (min) 0.112 1.01 11.6

CPU Time (min) 0.03 0.27 3.2

Output File Sizes (KB)

 connets* 56 570 7,300

Length of Files

 For * = n, the number of lines in the file connets* should be the number of connected

posets of size n. This was verified using Inspct.nb and OEIS.

Comparison Check 8.1

 The file anctcnn8 contains the connected posets of size 8 as found in the 1990s. To check

the contents of the file connets8, we compare it to anctcnn8. Using Compar.nb, we see that

the sorted list of standard forms of posets in anctcnn8 is identical to the sorted version of

connets8. This comparison took 4.0 minutes.

 VII.13

INSERT TABLE 7.2

VII.14

References

[Sl] N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences,

 http://www.research.att.com/~njas/sequences/, A001035, A006455, A000112, A000608,

 1996 – 2005.

[St] J. Stembridge, Poset lists, http://www.math.lsa.umich.edu/~jrs/archive.html.

[Wi] S. Wilmesmeier, Toward Characterizing Posets with the Jeu de Taquin Property, UNC

Masters Project, April, 1997.

