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A.  Introduction (including Definitions) 

 Let  P  be any finite partially ordered set (poset),  and set  p := |P|.   In his 1970 thesis, 

Richard Stanley generalized the notions of integer partitions and plane partitions to the notion 

of  P-partition for  P.   This is described in Section 4.5 of [St1].   Let  n ≥ 0.   A  P-partition of  

n  for  P  is an order reversing map  �  from  P  to the non-negative integers such that the sum 

of its images  � (y)  for  y Œ P  is  n.   The generating function  GP(x)  is defined to be the 

sum of  x| �
 |  over all  P-partitions for  P.   The polynomial  WP(x)  is defined to be the sum of   

x � (π)  over all inverse extensions  π  of  P,  where  �( π)  is the sum of all indices  1 ≤ j ≤ n–1  

such that  π (j) > π (j+1).   The main theorem in the subject is Stanley's Theorem 4.5.8:  GP(x) 

= WP(x)/∏1≤i≤p(1–xi).   In his thesis Stanley noted the following remarkable phenomenon 

for posets  P  which are rooted trees (with the root being the unique maximal element) and for 

posets  P  arising from Young diagrams (with the "first box" corresponding to the unique 

maximal element):   Not only does  WP(x)  evenly divide this denominator,  the result of this 

cancellation can itself be factored into the form  ∏1≤k≤p(1–xhk)–1,  where  {hk:  1 ≤ k ≤ p}  

is a set of  p  positive integers.   Here we say that a poset  P  is a hook length poset if there 

exists some such set of positive integers.   (Although Stanley had begun to use this 

terminology by 1970,  he did not include it in print in any of his principal publications on  P-

partitions.)   In his thesis Stanley conjectured that posets arising from shifted Young diagrams 

also had this property;  this was later proved by Emden Gansner.   In 1997,  Dale Peterson and 

Robert Proctor proved that any  d-complete poset has this property.   If a poset  R  is the direct 

sum of two posets  P  and  Q,  then it is not hard to see that  GR(x) = GP(x)GQ(x). 

 Given the fact that much of the programming needed for performing the computations 

required to determine whether a given poset has the hook length property had been done to 

test the Littlewood-Richardson conjecture,  the two authors of this supplemental chapter to 

Gann's project decided to quickly screen many small posets for this property.   In the case of 

connected hook length posets,  these computations reproduce and confirm the calculations 

performed by the second author and David Behrman between 1994 and 1996 for posets with 

up to  8  elements.   Not only have the programs used currently been written independently of 

the programs used then,  the posets used now are in the new standard form and are listed in 

the new standard order. 
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 There are three Parts of these hook length poset computations: 

I.  All hook length posets with   n  elements for  1 ≤ n ≤ 7. 

II.  Connected hook length posets with  n  elements for  1 ≤ n ≤ 9. 

III.  Indecomposable disconnected hook length posets with  n  elements for   

1 ≤ n ≤ 9. 

 Here are the definitions and the motivation for Part III:   A poset is disconnected if it has 

two or more connected components.   A disconnected hook length poset is decomposable if it 

can be expressed as a direct sum of two hook length posets.   There is no theoretical reason to 

expect every disconnected hook length poset to be expressible as a direct sum of two non-

empty hook length posets.   In fact,  Stanley has noted that the direct sum of the three element 

"V" poset and the four element total order has the hook length property,  even though the "V" 

poset does not.   This raises the question of how common indecomposable disconnected hook 

length posets are,  and whether there are any examples of the direct sum of two non-hook 

length posets having the hook length property. 

 The three sets of lists of hook length posets and their sets of hook lengths produced by 

Parts I - III have been posted at the Chapel Hill Poset Atlas web site.   The counts of such 

posets by size within each class are given in Table 8.3 below. 

 Given the results of the hook length computations in the mid-1990's,  the second author of 

this supplement conjectured that every connected hook length poset must have a unique 

maximal element.   The present computations have extended the confirmation of this 

conjecture from  n ≤ 8  to  n ≤ 9. 
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B.  Computational Strategy and Program Descriptions 
 Recall that the program ThrghBldUp.nb in Gann's project computed and wrote out all 

inverse extensions for all posets with up to  7  elements.   Moreover,  there are far more posets 

with  8  elements than there are with  7  elements,  and the computation of inverse extensions 

for a typical  8  element poset takes significantly longer than does the same computation for a 

typical  7  element poset.   Consequently,  we compute all hook length posets only up through  

n = 7.   Moreover,  our computational strategies in Parts II (connecteds) and III 

(indecomposable disconnecteds) for  8 ≤ n ≤ 9  will be different than our strategies in those 

parts for  1 ≤ n ≤ 7.  Hence we will refer to Parts IIa and IIb, and also to Parts IIIa and IIIb. 

 Scripts for the following computational approaches are given in Section D below, and a 

table which more tersely summarizes the final runs and checks is given in Section E. 

 The function  WPx[]  computes the polynomial  WP(x)  for a poset given in child form 

using the function  InvExtsWRI[].   Recall that this function "looks up" the stored inverse 

extensions when  n ≤ 7.   The main program  GenWPx.nb  applies the function  WPx[]  to 

each poset in an input list. 

 The function  HookQ[]  determines whether a given poset  P  has the hook length property 

by reading in  WP(x)  and considering the quotient  ∏1≤i≤p(1–xi)/WP(x):   If this quotient is 

a polynomial,  then the divisions by  (1–xn),  (1–xn–1), …  are successively repeatedly 

attempted.   The number of successful divisions by each attempted dividend is noted.   If these 

divisions completely factor the quotient,  then  P  has the hook length property.   The main 

program  HookPsts.nb   then writes  P  out to the primary output list,  and the sorted set of 

hook length exponents for  P  is written out to a parallel data file. 

 Part I of this supplemental hook length poset project is implemented simply by applying  

GenWPx.nb  and  HookPsts.nb  to the lists of all posets for  1 ≤ n ≤ 7.   Part IIa (for  1 ≤ n ≤ 

7) is implemented  by using  Selct.nb  with  ConnctdQ[]  to pull out the hook length posets 

which are connected.   Using  Compar.nb  and the lists  umaxmls*,  it was re-confirmed that 

every connected hook length poset for  1 ≤ n ≤ 7  has a unique maximal element.   The data 

file creation main program  Extrct.nb  extracts the sublist Z of entries of a data list X which 

parallels a poset list W, corresponding to a sublist Y of posets in W.   Here it is used to extract 

the hook length sets corresponding to the connected hook length posets. 

 The main program  GenWPx.nb  used 290 MB of the 512 MB available when computing 

the polynomials  WP(x)  for the non-d-complete connected posets for  n = 8.   Since it was 

clear that this program would use too much memory to do the analogous computation for  n = 
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9,  we rewrote it in a fashion which would use less memory.  The new main program  

BigWPx.nb  was efficient enough to include the connected  d-complete posets for both  n = 8  

and  n = 9. 

 In Part IIIa for  1 ≤ n ≤ 7,  we first used the main program  DrctSum.nb  to form the list 

of all hook length posets which are not of interest:  these would be all connected hook length 

posets of the given size,  together with the directs sums of any two smaller hook length posets.   

The formation of the standard form of the direct sum of any two posets was accomplished 

using the function  DirectSm[].   The resulting list was removed from the list of all hook 

length posets of the given size by  Complemnt.nb,  and the corresponding hook length sets 

were extracted by  Extrct.nb.   Only four posets were produced by this search;  each had  7  

elements.   These posets would not have been surprising to Stanley,  since they consisted of 

the directs sums formed from the "V" poset together with each of the four rooted trees which 

have four elements.   (There will always be a denominator factor of  (1–xn)  corresponding to 

the maximal element of a rooted tree with  n  elements.   In particular,  the factor  (1–x4)  

arising here cancels the numerator  1+x2  from  GP(x)  for the "V" poset,  leaving an 

acceptable quotient of  (1–x2).) 

 This approach will not work in Part IIIb when  8 ≤ n ≤ 9,  since we do not have the lists of 

all hook length posets available for  n = 8  and  n = 9.   Since we are seeking disconnected 

hook length posets  R,  it suffices to search for direct sums of two (not necesarily connected) 

posets  P  and  Q  with a total of  n  elements such that the product  GP(x)GQ(x)  satisfies the 

hook length criteria for  n-posets.   Let  R := P ≈ Q,  p := |P|,  and  q := |Q|.   From now on 

assume that  p ≤ q.   Note that  WR(x) = WP(x)WQ(x)C(p+q,p;x),  where C(p+q,p;x)  is the 

Gaussian coefficient polynomial.   So we seek posets  P  and  Q  such that  p + q = n  and such 

that  WP(x)WQ(x)C(p+q,p;x)  satisfies the usual test on  WR(x)  for  R  to be a hook length 

poset. 

 Our alternative approach to finding all of the indecomposable disconnected hook length 

posets relied upon some mathematical reasoning.   First we note: 

 

Proposition 1.   Let  R  be a hook length poset.   Suppose that  R  can be expressed as the 

direct sum of a one element poset  P  and another poset  Q.   Then the poset  Q  must be a 

hook length poset. 
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Proof.   Recall that  GR(x) = GP(x)GQ(x).   Suppose that  Q  is not hook length.   Then  

WQ(x)  must contain some factors which cannot cancel within the standard denominator of  

GQ(x).   Note that  GP(x) = 1/(1–x).   For  R  to be hook length,  the binomial  1–x  must help 

with the  GQ(x)  cancellation challenge.   This implies that  1–x  must divide  WQ(x).    This 

would imply that the sum of the coefficients of  WQ(x)  is zero.   But the coefficients of  

WQ(x)  are non-negative,  and at least one of them is positive.   Therefore  Q  must be hook 

length.   � 

 This proposition implies that there is no point in considering direct sums  P ≈ Q  where p 

= 1.   So for  n = 9  we have  q ≤ 7,  meaning that our stored lists of  WP(x)  suffice.   Since 

we want  R  to be an indecomposable hook length poset,  we do not consider pairs of  P  and  

Q  where both  P  and  Q  are known to be hook length.   Our main program  IDHLP.nb  

implements this approach. 

 It may seem that we are now ready to perform the desired searches in Part IIIb.   However,  

the following twist can occur:   The direct sum  P  of the three element vee poset  V  and the 

one element poset is not hook length.   Let  Q  be the four element total order.   It is know that  

V ≈ Q  is hook length.   Therefore  R = P ≈ Q  is a decomposable disconnected hook length 

poset.   It may have seemed that we were avoiding the consideration of this  R  due to 

Proposition 1 and our consequent requirement that  p ≥ 2.   However,  the poset  R  can sneak 

into our list of IDHLP's as the direct sum of the two  4-posets  P  and  Q. 

 So to prevent the inclusion of decomposable disconnected hook length posets,  we see that 

it is not sufficient to merely check that not both  P  and  Q  are hook length.   As in Part IIIa,  

we must form the list of of all direct sums with a total of  n  elements which can be formed 

from two hook length posets.   In contrast to Part IIIa,  we do not need to adjoin the list of 

connected hook length  n-posets to the exclusion list,  since these posets are not being 

considered to start with.   When  n = 8  we are now ready to go,  since we have available the 

list of all hook length  7-posets for the poset  Q:   We first use the program  DrctSum.nb  with 

an empty list of  8-posets in lieu of the list of connected hook length  8-posets to form the 

exclusion list. 

 However,  when  n = 9  this list of all hook length  8-posets is not available to be fed into  

DrctSum.nb  as posets  Q  for the formation of the exclusion list  smhlpos9  with the one 

element poset  P.   The following mathematical reasoning shows that it suffices to replace this 

unavailable list  hookpos8  with the list of all indecomposable disconnected hook length  8-
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posets  idhlpos8,  which we have just found in Part IIIb for  n = 8.   We say that a poset is  

a/b/…/c-sized if the sizes of its connected components are  a, b, …, c. 

 

Proposition 2.   Let  R  be an disconnected hook length poset of size  9.   Suppose that  R  has 

a connected component  P1  of size  1.   Suppose that  R – P1   is not connected.   Suppose 

that  R  cannot be expressed as the direct sum of two hook length posets,  each of size at least  

2.   Then  R – P1  must be an indecomposable disconnected hook length poset of size  8. 

 

Corollary.   Running the main program IDHLP.nb with the file  idhlpos8  substituted for the 

file  hookpos8  will produce exactly the set of all indecomposable disconnected hook length 

posets of size  9. 

 

Proof of Corollary.   The potential problem posed by the unavailability of the file  hookpos8  

is that direct sums of two hook length posets of sizes 1 and 8 will not be added to the list of 

inelgible  9-posets.   Let  R  be a disconnected hook length  9-poset which consequently 

inappropriately would appear in  idhlpos9  if no posets were added to  smhlpos9  during the  

1/8-iteration of the loop in Step IIIb.1 due to the unavailabilty of the file  hookpos8.   So   R  

must have a connected component of size  1.   Call it  P1.   Using Proposition 1,  IDHLP.nb 

does not even consider direct sums of 1-posets with  8-posets.   In particular,  posets of 

connected component sizes  1/8  are not considered to start with,  and hence do not need to be 

added to smhlpos9.   So  R – P1  is not connected.   Even before the ad hoc file substitution 

fix,  the list smhlpos8 will include all sums of two hook length posets in which each poset has 

at least two elements.   We have confirmed that all three hypotheses of the proposition are 

satisfied.   Applying the proposition,  we learn that  R – P1  must be in the file  idhlpos8.   

Therefore with the ad hoc fix,  the poset  R  will appear in the file  smhlpos9.   Therefore all 

of the posets which would not be excluded due to the unavailability of the file  hookpos8  will 

in fact be excluded because of this ad hoc fix.   � 

 

Proof of Proposition 2.   Let  R  and  P1  be as in the statement of the proposition.   Using the 

first hypothesis,  consider the  8-poset  R2 := R – P1.   Since  R  is hook length and  |P1| = 1,  

Proposition 1 implies that  R2  is hook length.   By the second hypothesis,  the poset  R2  is 

disconnected.   Suppose that  R2  can be expressed as a direct sum  P2 ≈ P3  of two hook 
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length posets,  with  |P2| ≤ |P3|.   Then  R = (P1 ≈ P2) ≈ P3  would decompose  R  into two 

hook length posets, each of size at least  2.   This would contradict the third hypothesis.   

Therefore  R2  must be an indecomposable hook length poset.   We conclude that  R2  must 

appear in the list  idhlpos8  of indecomposable disconnected hook length posets of size  8.   �  

 Both Parts IIb and IIIb supersede Parts IIa and IIb respectively.   The descriptions of Parts 

IIa and IIb have been retained since they were relatively easy to implement,  and since using 

the largely independent programs to compute the answers for the overlapping cases when  4 ≤ 

n ≤ 7  produces valuable checks of program correctness. 



VIII.10 

References 
 

[Beh] D. Behrman,  An investigation of hook-length posets,  UNC Masters Project,  

 December, 1996. 

 

[St1] R.P. Stanley,  Enumerative Combinatorics, Vol. 1,  Wadsworth & Brooks/Cole, 
 Monterey, 1986.



  VIII.11 

C.  Table 8.1: Program Interaction and Storage 
 

 Program Used By Stored In 
General 
Subroutines 

NoSpcs[], 
WriteLstOfLst[] 

All main programs added in the 
hook length supplement. 

GenrlUtils.m 

 PrntCnsmptn[] GenWPx.nb, HookPsts.nb GnerlUtils.m 
    
Inverse  InvExtsWRI[] GenWPx.nb InvExIsoFncts.m 
Extensions and   StdFormIso[] DrctSumb.nb InvExIsoFncts.m 
Iso. Functions    
    
Hook Functions  WPx[] GenWPx.nb HookUtils.m 
 HookQ[] HookPsts.nb HookUtils.m 
 DirectSm[] DirctSum.nb HookUtils.m 
 GaussPolyn[] IDHLP.nb HookUtils.m 
 ToPolyn[] IDHLP.nb HookUtils.m 
 InvStdTab[] BigWPx.nb HookUtils.m 
    
WP(x) Main GenWPx.nb  GenWPx.nb 
Programs BigWPx.nb  BigWPx.nb 
    
Hook Length  HookPsts.nb  HookPsts.nb 
Main Program    
    
Indecomposable IDHLP.nb  IDHLP.nb 
Disconnected     
Main Program    
    
Routine Poset   ConnctdQ[] Selct.nb PstPropTsts.m 
Property Test    
Functions    
    
File Inspection Compar.nb  Compar.nb 
And Comparison    
Main Programs    
    
Data File  Selct.nb  Selct.nb 
Creation Main Complemnt.nb  Complemnt.nb 
Programs Extrct.nb  Extrct.nb 
    
Direct Sum  DirctSum.nb  DirctSum.nb 
Main Program    
    
Auxiliary invexts* InvExtsWRI[], GenWPx.nb  
Data Files stdisos* InvExtsWRI[], GenWPx.nb  
 lookups* InvExtsWRI[], GenWPx.nb  
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D.  Run Scripts and Data File Descriptions 
 
I.  Hook Length Posets  (1 ≤ n ≤ 7) 
 
1.  Compute the  WP(x)'s 
Synopsis:  Read in the list of all posets.  Apply WPx[], which finds the list of 
inverse extensions for each poset by using InvExtsWRI[].  Write the lists of 
ascending coefficients of the resulting  WP(x)'s  to a file which parallels the 
poset file, each as the sequence of coefficients of increasing powers. 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: GenWPx.nb 
 Function: InvExtsWRI[], WPx[] 
 Input Subdirectory: StdPsts 
 Data Subdirectories: StdIsos, Lookups, InvExts 
 Output Subdirectory: StdWPxs 
 
2.  Find the Hook Length Posets 
Synopsis:  Read in the lists of all posets and their  WP(x)'s.  The function 
HookQ[] takes a  WP(x)  as its argument and tests it to determine if  P  has the 
hook length property.  This function returns the empty list if not, and the list of 
hook exponents in increasing order if so.  The main program writes the poset to 
a file and its sorted list of hook lengths to a parallel file. 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: HookPsts.nb 
 Function: HookQ[] 
 Input Subdirectories: StdPsts, StdWPxs 
 Output Subdirectories: HookPos, HookLns 
 
IIa.  Connected Hook Length Posets  (1 ≤ n ≤ 7) 
 
1.  Select Connected Hook Length Posets 
Synopsis:  Read in the lists of all hook posets and pull out the connected ones. 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: Selct.nb 
 Function: ConnctdQ[] 
 Input Subdirectory: HookPos 
 Output Subdirectory: CoHkPos 
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1.1.  Check Against Ancient List 
Synopsis:  Compare this modern list to the one found by 1996. 
 Size Range: 7 ≤ n ≤ 7 
 Main Program: Compar.nb 
 Input Subdirectories: Ancints, CoHkPos 
 
1.2.  Check Against DP-RP "d-Completes are Hook Length" Theorem 
Synopsis:  As a check:  see if within the set of all connected posets,  whether the 
set of  d-complete posets is indeed a subset of the set of all hook length posets. 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: Compar.nb 
 Input Subdirectories: Cnctdcs, CoHkPos 
 
 
2.  Test the Unique Maximal Element Conjecture 
Synopsis:  See if the list of all connected hook length posets is a subset of the 
list of all posets with a unique maximal element (is already known true up 
through  n = 8). 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: Compar.nb 
 Input Subdirectories: CoHkPos, UMaxmls 
 
 
3.  Extract Hook Length Sets for Connected Cases 
Synopsis:  Obtain the lists of hook length sets which correspond to the lists of 
connected hook length posets. 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: Extrct.nb 
 Input Subdirectories: HookPos, CoHkPos, HookLns 

 Output Subdirectory: CoHkLns 
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IIb.  Connected Hook Length Posets  (8 ≤ n ≤ 9) 
 
1.  Test Run for the New  WP(x)  Program 
Synopsis:  Test the new main program on all non-d-complete connected posets 
with 8 elements. 
 Size Range: n = 8 
 Main Program: BigWPx.nb 
 Function: InvStdTab[] 
 Input Subdirectories: Cnctndc 
 Data Subdirectories: StdIsos, Lookups, InvExts 
 Output Subdirectory: TestWPx/ctndcws8 
 
2.  Compute the  WP(x)'s 
Synopsis:  Use the new main program to compute  WP(x)  for all connected 
posets. 
 Size Range: 8 ≤ n ≤ 9 
 Main Program: BigWPx.nb 
 Function: InvStdTab[] 
 Input Subdirectory: Connets 
 Data Subdirectories: StdIsos, Lookups, InvExts 
 Output Subdirectory: ConWPxs 
 
3.  Find the Hook Length Posets 
Synopsis:  Same as I.2, but just for connected posets. 
 Size Range: 8 ≤ n ≤ 9 
 Main Program: HookPsts.nb 
 Function: HookQ[] 
 Input Subdirectories: Connets, ConWPxs 
 Output Subdirectories: CoHkPos, CoHkLns 
 
4.  Test the Unique Maximal Element Conjecture 
Synopsis:  Identical to IIa.2. 
 Size Range: 8 ≤ n ≤ 9 
 Input Subdirectories: CoHkPos, UMaxmls 
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IIIa.  Indecomposable Disconnected Hook Length Posets  (1 ≤ n ≤ 7) 
 
1.  Form All Direct Sums of Two Hook Length Posets 
Synopsis:  For each given  n,  find all of hook length posets in standard form 
which are connected or which can be obtained by forming the direct sum of two 
hook length posets. 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: DrctSum.nb 
 Function: DirectSm[], StdFormIso[] 
 Input Subdirectories: HookPos, CoHkPos 
 Output Subdirectory: SumHLPs 
 
2.  Find Preliminary IDHLP's 
Synopsis:  Remove the sets of decomposable hook length posets found in Part 1 
from the sets of all hook length posets and then extract the hook sets 
corresponding to the surviving posets of interest.  Since IDHLP's will be found 
again in Part IIIb, these outputs will be designated as "preliminary". 
 Size Range: 1 ≤ n ≤ 7 
 Main Program: Complemnt.nb 
 Input Subdirectories: HookPos, SumHLPs 
 Output Subdirectory: PIDHLPs 
 Main Program: Extrct.nb 
 Input Subdirectories: HookPos, IDHLPos, HookLns 
 Output Subdirectory: PIDHLPh 
 
IIIb.  Indecomposable Disconnected Hook Length Posets  (4 ≤ n ≤ 9) 
 
1.  Find Direct Sums of Hook Length Posets 
Synopsis:  In the next step we will want to ignore all posets which can be 
expressed as the direct sum of two hook length posets.  Since we want to use the 
existing main program DrctSum.nb, some dummy empty files emptyps* must 
first be created by hand for 1 ≤ * ≤ 9. 
 Size Range: 4 ≤ n ≤ 9 
 Main Program: DrctSum.nb 
 Functions: DirectSm[], StdFormIso[] 
 Input Subdirectories: HookPos, EmptyPs 
 Output Subdirectories: SmHLPos 
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2.  Find IDHLP's 
Synopsis:  Run through all ways of producing a poset  R  with  n  elements from 
two smaller posets  P  and  Q  which are not both hook length posets and which 
have at least two elements apiece.  (The one element poset does not need to be 
considered as a component.)  The polynomial  WR(x)  for the direct sum poset  
R  is obtained by multiplying  WP(x)  and  WQ(x).  This polynomial is tested for 
the hook length property.  If it does, then it is checked whether  R  is a member 
of the list produced in Step 1 before being added to the list of IDHLP's. 
 Size Range: 4 ≤ n ≤ 9 
 Main Program: IDHLP.nb 
 Functions: DirectSm[], StdFormIso[] 
 Input Subdirectories: StdPsts, StdWPxs, HookPos, SmHLPos 
 Output Subdirectories: IDHLPos, IDHLPhl 
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Insert Table 8.2
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F.  Descriptions of Final Program Runs and Checks 

 

 

Final Run Stage I.1 

 

Main Program:  GenWPx.nb  Date/Time of Run:  6/09/2005  5:00 PM 

 6/16/2005  1:40 PM 

Starting poset size:  n = 1   Ending poset size:  n = 5 

 n = 6 n = 7 
 
Input Subdirectory:  StdPsts 
Output Subdirectory:  StdWPxs 

 

Resource Consumption for the 2 Largest Values of n 
 

Poset Size n = 6 n = 7  

RAM  (MB) 51 62  

Real Time (min) 0.43 1.45  

CPU Time (min) 0.35 1.30  

Output File Sizes (KB) 

 stdwpxs* 8 70 

 
 

Lengths of Files 

 For * = n, the number of lines in the file stdwpxs* will be the number of posets of size n.   
 



VIII.20 

Final Run Stage I.2 

 

Main Program:  HookPsts.nb  Date/Time of Run:  6/09/2005  6:00 PM 

 6/12/2005  4:35 PM 

Starting poset size:  n = 1   Ending poset size:  n = 6 

 n = 7 n = 7 
 
Input Subdirectories:  StdPsts, StdWPxs 
Output Subdirectories:  HookPos, HookLns 

 

Resource Consumption for the 2 Largest Values of n 
 

Poset Size n = 6 n = 7  

RAM  (MB) 0.80 0.94  

Real Time (min) 0.01 0.175  

CPU Time (min) 0.01 0.144  

Output File Sizes (KB) 

 hookpos* 2 6 

 hooklns* 1 3 

 
 

Lengths of Files 

 For * = n, the number of lines in the file hookpos* and hooklns* should be the number of 

hook length posets of size n.   
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Final Run Stage IIa.1 

 

Main Program:  Selct.nb   Date/Time of Run:  6/09/2005  6:20 PM 

 6/12/2005  4:43 PM 

Starting poset size:  n = 1   Ending poset size:  n = 6 

 n = 7 n = 7 
 
Input Subdirectory:  HookPos 
Output Subdirectory:  CoHkPos 

 

Resource Consumption for the 2 Largest Values of n 
 

 The consumption of time and memory in these runs was not significant and so is not 

recorded here.   

 n = 6 n = 7  

Output File Sizes (KB) 

 cohkpos* 1 3 

 
 

Lengths of Files 

 For * = n, the number of lines in the file cohkpos* should be the number of connected 

hook length posets of size n.  This was found during Behrman’s work with Proctor in 1996.  

This is verified using Inspct.nb.   
 

 

 

Comparison Check IIa.1.1 

 The file hklngth7 contains all connected hook length posets of size 7 as found by the 

old programs.  To check the contents of cohkpos7 we compare it to hklngth7.  Using 

Compar.nb we see that the sorted list of standard forms of posets in hklngth7 is identical to 

the sorted version of cohkpos7. 
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Final Run Stage IIa.1.2 

 

Main Program:  Compar.nb   Date/Time of Run:  6/12/2005  5:00 PM 

Starting poset size:  n = 1  Ending poset size:  n = 7 
 
Input Subdirectories:  Cnctdcs, CoHkPos 

 
 

Comparison Check 

 For * £ 5, the files cnctdcs* and cohkpos* are found to be identical.  For 6 £ * £ 7, we 

find that the posets in the file cnctdcs* form a proper subset of the posets in cohkpos*.   

 

 

 

 

 

 

Final Run Stage IIa.2 

 

Main Program:  Compar.nb   Date/Time of Run:  6/12/2005  5:10 PM 

Starting poset size:  n = 1  Ending poset size:  n = 7 
 
Input Subdirectories:  CoHkPos, UMaxmls 

 
 

Comparison Check 

 For * £ 4, the files cohkpos* and umaxmls* are found to be identical.  For 5 £ * £ 7, we 

find that the posets in the file cohkpos* form a proper subset of the posets in umaxmls*.   
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Final Run Stage IIa.3 

 

Main Program:  Extrct.nb   Date/Time of Run:  6/14/2005  1:50 PM  

Starting poset size:  n = 1   Ending poset size:  n = 7 
 
Input Subdirectories:  HookPos, CoHkPos, HookLns 
Output Subdirectory:  CoHkLns 

 

Resource Consumption for the 2 Largest Values of n 
 
 The consumption of time and memory was not measured for this run but was not 
significant.   
 

 n = 6 n = 7  

Output File Sizes (KB) 

 cohklns* 1 2 

 
 

Lengths of Files 

 For * = n, the number of lines in the file cohklns should be the number of connected hook 

length posets of size n.  This is verified using Inspct.nb 
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Final Run Stage IIb.1 

 

Main Program:  BigWPx.nb   Date/Time of Run:  7/07/2005  3:25 PM 

Starting poset size:  n = 8   Ending poset size:  n = 8 
 
Input Subdirectory:  Cnctndc 
Output Subdirectory:  TestWPx 

 

Resource Consumption for this run 
 

 RAM  (MB) 33  

Real Time (min) 10.1  

CPU Time (min) 8.5  

Output File Size (KB) 

 ctndcws8  690  

 
 

 
 

Length of File 

 The number of lines in the file cnctndc8 should be the number of connected non-d-

complete posets of size 8.  This is verified using Inspct.nb and our 2005 counts.   
 

 

 

Comparison Check IIb.1.1 

 Originally, we used GenWPx.nb for cnctndc8.  This used 290 MB and took 8.1 minutes.  

This approach was discarded because it would not work for cnctndc9.  The file olcndcw8 was 

created using that approach.  Using Compar.nb, we find that ctndcws8 is identical to 

olcndcw8.       
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Final Run Stage IIb.2 

 

Main Program:  BigWPx.nb   Date/Time of Run:  7/07/2005  3:49 PM 

Starting poset size:  n = 8   Ending poset size:  n = 9 
 
Input Subdirectory:  Connets 
Output Subdirectory:  ConWPxs 

 

Resource Consumption for this run 
 

 Poset Size n = 8 n = 9  

RAM  (MB) 33 430  

Real Time (min) 9.5 430  

CPU Time (min) 8.7 420  

Output File Sizes (KB) 

 conwpxs* 690 11,400 

  

 

 
 

Length of File 

 The number of lines in the file conwpxs* should be the number of connected posets of 

size *.  This is verified using Inspct.nb.   
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Final Run Stage IIb.3 

 

Main Program:  HookPsts.nb  Date/Time of Run:  7/08/2005  1:22 PM 

Starting poset size:  n = 8   Ending poset size:  n = 9 
 
Input Subdirectories:  Connets, ConWPxs 
Output Subdirectories:  CoHkPos, CoHkLns 

 

Resource Consumption for this run 
 

Poset Size n = 8 n = 9  

RAM  (MB) 19.9 72  

Real Time (min) 1.07 14.7  

CPU Time (min) 1.03 14.4  

Output File Sizes (KB) 

 cohkpos* 9 26 

 cohklns* 5 13 

 

 

Lengths of Files 

 The number of lines in the file cohkpos* and cohklns* should be the number of connected 

hook length posets of size *.  For * = 8, this is verified using Inspct.nb and the 1990’s count 

for the number of connected hook length posets of size 8.   

 

 

 

Final Run Stage IIb.4 

 

Main Program:  Compar.nb   Date/Time of Run:  7/08/2005  1:50 PM 

Starting poset size:  n = 8  Ending poset size:  n = 9 
 
Input Subdirectories:  CoHkPos, UMaxmls 
 
 

Comparison for Conjecture 

 For * = 8 and 9, the posets in the file cohkpos* form a proper subset of the posets in 

umaxmls*, thereby re-confirming and extending the 1990’s confirmation of the conjecture 

that every connected hook length poset has a unique maximal element.  
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 Final Run Stage IIIa.1 

 

Main Program:  DrctSum.nb  Date/Time of Run:  6/12/2005  4:52 PM 

 6/14/2005  7:00 PM  

Starting poset size:  n = 7   Ending poset size:  n = 7 

 n = 1 n = 6 
 
Input Subdirectories:  HookPos, CoHkPos 
Output Subdirectory:  SumHLPs 

 

Resource Consumption for the 2 Largest Values of n 
 

Poset Size n = 6 n = 7  

RAM  (MB) 0.01 0.49  

Real Time (min) 0.003 0.20  

CPU Time (min) 0.003 0.189  

Output File Sizes (KB) 

 sumhlps* 2 5 

 

 

Lengths of Files 

 For * = n, the number of lines in the file sumhlps* should be the number of connected 

hook length and decomposable hook length posets of size n.   

These numbers are: 1, 2, 4, 10, 23, 63, 161. 
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Final Run Stage IIIa.2 

 

Main Program:  Complemnt.nb  Date/Time of Run:  6/12/2005  4:55 PM 

 6/14/2005  4:27 PM 

Starting poset size:  n = 7   Ending poset size:  n = 7 

 n = 1 n = 6 
 
Input Subdirectories:  HookPos, SumHLPs 
Output Subdirectory:  PIDHLPs 

 

Resource Consumption for the 2 Largest Values of n 
 

 The time and memory was not measured for this run but the consumption was not 

significant. 
 n = 6 n = 7  

Output File Sizes (KB) 

 idhlpos* 0 1 
 

Lengths of Files 

 For * = n, the number of lines in the file idhlpos* is the number of indecomposable 

disconnected hook length posets of size n.  This is found using Inspct.nb.   

  

 
 

Main Program:  Extrct.nb   Date/Time of Run:  6/12/2005  4:58 PM 

Starting poset size:  n = 7   Ending poset size:  n = 7 
 
Input Subdirectories:  HookPos, IDHLPos, HookLns 
Output Subdirectory:  PIDHLPh 

 

Resource Consumption for this run 
 

 The time and memory was not measured for this run but the consumption was not 

significant.   
 

The file idhlphl* is empty for * £ 6 and is not created by this program run.  This file was 

created by hand for the sake of completeness. 
  

Output File Size (KB) 

 idhlphl7 1  
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Final Run Stage IIIb.1 

 

Main Program:  DrctSum.nb  Date/Time of Run:  7/07/2005  2:38 PM 

 7/08/2005   2:12 PM 

Starting poset size:  n = 4   Ending poset size:  n = 8 

 n = 9 n = 9    
 
Input Subdirectories:  HookPos, EmptyPs 
Output Subdirectory:  SmHLPos 

 

Resource Consumption for this run 
 

Poset Size n = 7 n = 8 n = 9 

RAM  (MB) 0.47 3.9 35 

Real Time (min) 0.183 1.57 9.9 

CPU Time (min) 0.117 1.54 9.7 

Output File Sizes (KB) 

 smhlpos* 3 9 18 
 
Lengths of Files 
 For * = n, the length of the file smhlpos* should be the number of decomposable hook 

length posets of size n.  These numbers are: 5, 12, 32, 86, 242, 470. 

 

 

Comparison Check IIIb.1.1 

 The file smhlpos7 is a proper subset of sumhlps7.  The difference in the length of these 

files is verified to be the number of connected hook length posets of size 7.   

 

   



VIII.30 

Final Run Stage IIIb.2 

 

Main Program:  IDHLP.nb   Date/Time of Run:  7/07/2005  2:50 PM 

 7/08/2005  2:25 PM 

Starting poset size:  n = 4   Ending poset size:  n = 8 

 n = 9 n = 9 
 
Input Subdirectories:  StdPsts, StdWPxs, HookPos, SmHLPos 
Output Subdirectories:  IDHLPos, IDHLPhl 

 

Resource Consumption for this run 
 

 Poset Size n = 7 n = 8 n = 9 

RAM  (MB) 0.75 3.1 11.7 

Real Time (min) 0.0180 0.09 0.75 

CPU Time (min) 0.0104 0.08 0.72 

Output File Sizes (KB) 

 idhlpos* 1 1 2 

 idhlphl* 1 1 1 

 

 

Lengths of Files  

 For * = n, the length of the files idhlpos* and idhlphl* should be the number of 

indecomposable hook length posets of size n.  This is found using Inspct.nb.    

 

 

Comparison Check IIIb.2.1 

 For * = 6, 7, the files pidhlps* and idhlpos* are identical.  Using an earlier approach, we 

obtained a list of indecomposable hook length posets of size 8.  This list was stored in the file 

pidhlps8.  We also find that idhlpos8 is identical to pidhlps8. 

 

Comparison Check IIIb.2.2 

 For * = 6, 7, the files pidhlph* and idhlphl* are identical.  The file pidhlph8 was created 

in the earlier approach along with pidhlps8.  We also have that pidhlps8 and idhlphl8 are 

identical.  
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Insert Table 8.3. 
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